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A new plot to display the strain of elliptical markers 
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Abstract - -A modification of the Elliott grid for plotting ellipse shape data are described. The effects of strain on 
elliptical markers are easy to visualize when the data are plotted on the new grid, and this allows clear 
interpretation of displayed data. New graphical methods for manipulating distributions of elliptical markers are 
directly related to an existing numerical method. When a distribution on the grid is strained, all the points move 
along straight, parallel lines. An initial distribution in which all the points lie on a straight line is strained into a 
distribution with the points lying on a hyperbola. Such curves include the analogues of "theta curves'. If the points 
lie on a circle centred at the grid origin, they are strained so as to lie on an ellipse. These are the analogues of 
"onion curves'. 

INTRODUCTION 

FOR OVER A decade, arrays of deformed ellipses, such as 
pebbles in conglomerates or ooliths in limestones, have 
been used to yield strain estimates. Early methods, for 
instance those of Ramsay (1967) and Dunnet  (1969), 
involved plotting Rf,  the final axial ratio, and Of, the 
angle of the major  axis to a datum direction (Fig. 1), for 
each ellipse. The strain was estimated by superimposing 
sets of standard curves (often referred to as 'onion 
curves' ,  which are the loci of ellipses of fixed initial axial 
ratio, Ri) to the plotted points, and obtaining a visual 
'best fit'. Initially Rf and Of were plotted as Cartesian 
coordinates, but strain paths are difficult to visualize on 
the resulting diagram. Elliott (1970) proposed a much 
better  grid, on which In Rf was plotted as radial coordi- 
nate and 20f as angular coordinate. Strain was still 
determined by visual best fit, although the process of 
unstraining distributions was easier. 

Later  workers at tempted to remove the subjectivity of 
this approach by inventing formal algorithms for un- 
straining or curve fitting. However ,  these tend to be 
complex and ambiguous. For example, Lisle (1977), 
presented a formal technique for fitting ' theta curves' 
(curves which are the loci of ellipses of fixed initial 
orientation, 0i) to data. The theta curves are strained in 
small increments, and at each stage a statistical test is 
applied to test the randomness of the data relative to the 
curves. The result of this method is dependent  on the 
chosen theta curve spacing, as well as the fineness of 
strain increments, and the computations are time con- 
suming. Methods proposed using measurements on 
ellipses other  than R and 0 (for example Matthews et al. 
1974, Robin 1977) have similar shortcomings. 

In assessing different methods of strain analysis, there 
are four criteria to consider. 

(1) Independent  workers, applying the same method 
to the same data, should deduce the same strain. 

(2) The method should involve no arbitrary quantities, 
such as the theta curve spacing in Lisle's method (see 
above). 
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(3) A rotation of the deformed marker ellipses should 
result in an identical rotation of the deduced strain 
ellipse. 

(4) If a strain E has been deduced from a set of data, 
and that data is deformed by deformation D by direct 
computation, then the strain deduced from the new data 
should be that corresponding to the resultant deforma- 
tion DE. Any method satisfying (4) will satisfy (3) but the 
converse is not always true. 

Most methods conform empirically to these criteria, 
but with appropriate data will violate one or more of 
them. The only method which uses only the shapes of 
marker  ellipses, and can be proved to Satisfy the above 
criteria, is that of Shimamoto & Ikeda (1976). In itself 
this would seem to be sufficient, and it involves no 
pictorial representation of the data. There are several 
reasons why a related graphical technique is necessary. 

(1) If a computer  is not available, a strain estimate can 
still be made. 

(2) Strain paths can be constructed quickly. 
(3) Other  features in the rock such as bedding and 

cleavage, can be visualized in relation to the distribution. 
(4) When displayed graphically the undeformed distri- 

bution may not look random, for which there are six 
possible explanations. 

(a) The initial distribution did not satisfy the ran- 
domness criterion. In this case it might have been an 
initial sedimentary clast pattern (see Elliott 1970). 

(b) The initial distribution satisfied the randomness 
criterion but was asymmetric in some way. 

(c) The sample size is too small, in which case a 
sample taken from a random population may look non- 
random. 

Fig. 1. The definition of R and 0 for an ellipse. 
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Fig. 2. The modified Elliott grid. The scale shows the radius in terms of R. Increment in R along Y-axis is 0.2: increment in 
In R for hyperbolae is 0.2. See text for details of use. 

(d) A few anomalous data points are responsible, 
which may be the result of measurement  error. 

(e) The assumption that markers,  matrix and bulk 
rock all suffer the same strain is incorrect. 

(f) The bulk strain varied across the sample. 
There is a simple modification to the Elliott grid which 

gives a direct link to the Shimamoto & Ikeda (1976) 
method,  and has additional useful properties. The prop- 
osed modification to the Elliott (1970) plot (Fig. 2) 
involves plotting 

sinh 2¢ = ½(R = 1/R) (1) 

as the radial coordinate,  instead of ~. Equations (A1)-  
(A27) cited in the following discussion are given in the 
Appendix. 

GRAPHICAL USES 

Ellipses, whether they are initial or final shapes, or are 
themselves strain ellipses, are plotted as follows: the 
angle O is doubled and then measured anticlockwise 
from the datum to give the ray on which the point will lie. 
The radius is determined from the scale (Fig. 2), and 
must, of course, be meas.ured from R = 1 at the origin. 
Alternatively the radius 

½(n- l/R) (2) 
can be calculated directly. 

Once plotted, points can be strained as follows: orien- 
tate the grid until the required long axis at the strain 
ellipse is along the X-axis. Then to strain a point, move 
it to the right along the coaxial strain path, a straight line 

parallel to the X-axis (on the Elliott (1970) grid, corre- 
sponding paths are curved). The hyperbolae (which are 
the loci of ellipses for which Oi was +45 °) are separated 
by constant In R increments of 0.2. To strain a point by, 
for example, In R = 0.6, move the point 3 hyperbolae to 
the right. 

If we have a set of points which initially lay on a circle 
round the origin (Ri constant), these are deformed into 
an ellipse, whose long axis points along the axis of strain. 
Concentric circles give non-concentric ellipses (Fig. 3) 
but all the ellipses have the same axial ratio. It must be 
emphasized that this is not the axial ratio of the strain 
ellipse, but is simply related to it (equation A15). These 
ellipses are the analogues of the 'onion curves' of Dunnet  
(1969). The set of non-concentric ellipses for a given 
imposed strain will hence be referred to as an 'onion set'. 
Each onion curve is now an 'onion-ellipse'. 

To determine the strain in a distribution of elliptical 
markers, plot the distribution on the grid. If an onion set 
can be fitted, then the strain is that of the onion set. If an 
onion set cannot be fitted then the distribution was not 
initially random. If onion sets are not available, a single 
onion-ellipse can be drawn by hand to enclose the bulk 
of the distribution. The two ends of the onion-ellipse will 
give representative values for the maximum and 
minimum final axial ratios of the elliptical markers. 
These values can be read off using the radial scale on the 
grid (Fig. 2). The strain ratio will be the harmonic mean 
of the maximum and minimum final axial ratios. To 
check on this, compare the axial ratio of the enveloping 
onion-ellipse with that derived from equation (A15), 
which relates the strain ratio to the axial ratio to the 
onion-ellipse. Other  ellipses can be drawn inside the 
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Fig. 3. Onion sets for various strain ratios. For each set, initial ratios of R, = 1 to 6 are illustrated. The hyperbolae are the 
images of the Y-axes. 

envelope and compared qualitatively with the onion set 
shapes in Fig. 3. 

In this context it is worth noting that 'contours' (de- 
fined as being lines of constant point density) do not 
necessarily deform in the same way as the points which 
they contour. For instance, points on the right-hand side 
of the grid will become rarefied as strain occurs, whereas 
on the left-hand side they will be condensed. So though 
they may lie on the same contour to begin with, they will 
end up on different ones. This aspect is illustrated in Fig. 
4 in which a model initial distribution, of constant density 
on the grid, is deformed. 

Bedding planes should be represented by points at 
infinity on the plot, since they are geometrically equiva- 
lent to infinitely flattened ellipses. Instead they are 
represented by ticks round the outer margin of the grid, 
each tick at an angle 20 to the plot axis, the angle of 
bedding to the reference direction in real space being 0 

(Fig. 2). The ticks point towards the theoretical location 
of the infinity point: Note that each bedding plane or 
other linear feature corresponds to only one tick and not 
a pair of diametrically opposed ticks. Each tick is also the 
asymptote to one of the hyperbolae, because as ellipse 
points move with the hyperbolae, bedding directions 
move with the asymptotes (equations A26 and A27). 
Consider the example above, in which points represent- 
ing ellipses moved 3 hyperbolae to the right. Then any 
bedding or other passively deforming linear feature will 
move 3 ticks to the right. This procedure is identical to 
using the Elliott plot to deform linear features. 

An example of a set of deformed ellipses has been 
chosen from the Pipe Rock (Cambrian) of Northwest 
Scotland, and is shown in Fig. 5(a). The markers are the 
bedding-plane intersections of worm tubes, and there 
has been bedding-parallel strain. The onion set has been 
calculated from the result of t he  Shimamoto & Ikeda 
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Fig. 4. A simulated random distribution, unstrained in (a) and subject to a strain of R~ = 4 in (b). In the unstrained state the 
point density on the new grid is constant; in the strained state it is not. Hence,  though onion-ellipses may be density contours 

in an ideal initial random distribution, this will not be true after strain. 

a b 

Fig. 5. (a) Pipe data plotted on the new grid. Points denote ellipse shapes, and the cross denotes the strain ellipse, which has 
R~ = 1.13 at 65.1 degrees. An onion set has been superimposed, with R~ increments of 0.25, the largest R~ being 1.5. (b) The 

same data, restored to the unstrained state, with the onion set also restored. 

/ 
\ 

• a 1:3 

Fig. 6. Additional pipe data, (a) strained and (b) unstrained. The strain is R5 = 1.93 at 0.5 degrees. Onion set increments of 
0.25. 
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(1976) method,  and illustrates what a best fit ought to 
look like. In Fig. 5(b), thc distribution has been restored 
to its original shapc, and the onion set restored to the 
zero-strain onion set (i.e. concentric circles). It should 
be noted that the process of 'restoring' or 'unstraining" a 
distribution simply involves imposing an additional 
strain (I/R,, 0,.) on a distribution which has suffered a 
strain (R,, 0,), and there is no technical distinction 
between straining and unstraining. 

The unstrained distribution in Fig. 5(b) shows random 
scatter about the origin as one would expect. Figure 6 
shows a similar set of pipes, strained and unstrained. 
The unstrained distribution in Fig. 6(b) is not ideally 
random; there are about five points on the left which 
have anomalously high apparent initial ellipticity, and 
low final ellipticity. This might indicate that pipes of 
different initial shapes have deformed differently, those 
of higher initial ellipticity being rotated as well as 
strained, those of low ellipticity less affected by rotation. 
Alternatively the anomalies could be simply a result of 
the sampling process, small samples from a random 
population are not in general random. Whatever  the 
explanation, the use of the plot illuminates features 
which would otherwise escape attention. 

NUMERICAL ASPECTS 

The 'average strain' is defined by equations (A19)-  
(A21). The point at which this strain ellipse plots on the 
grid lies on the line connecting the centroid of the 
distribution to the origin, but is closer to the origin than 
is the centroid, by a factor J. A random distribution thus 
has its centroid at the origin, as one would expect 
intuitively. It is worth noting that equation (A18) is not 
the only possible criterion for randomness, but is the 
most amenable to mathematical treatment.  Note also 
that the objectivity of the method is more important 
than its apparent accuracy. The 'distribution spread 
invariant' (J) is a measure of the spread of axial ratios in 
the initial distribution: it should be near unity for, for 
instance, nearly circular ooliths, but will be more for 
conglomerates with some initially elongate clasts. The 
latter correspond to Elliott 's (1970) 'delta' and 'heart '  
distributions, It is suggested that J could be used to 
discriminate between different sorts of initial distribu- 
tion, whether or not they are deformed. Distributions of 
low J are better  for deducing strains. 

was non-random but symmetric with respect to bedding. 
There cxists a simple objective numerical solution in this 
situation, along the lines of the Shimamoto & Ikeda 
(1976) method. 

(2) There has been disagreement about whether the 
strain history of the sample (coaxial or non-coaxial) 
affects the finite strain deduced using existing methods 
(Siddans 1980, De Paor 1981). Equation (A21) shows 
that the strain history nowhere enters the method,  and 
does not affect the result. 

(3) The method gi.ves a value of the apparent finite 
strain suffered by the marker ellipses. This is the same as 
the bulk strain only if the ellipses and matrix deformed 
homogeneously and there was no ductility contrast. It 
remains for the work of Gay (1968) to be applied in this 
context. 
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APPENDIX 

DISCUSSION 

The new grid reflects the actual geometry of deforming 
ellipses in a very direct way. Hence it should shed light 
on the problem areas of strain analysis. 

(1) The deformed ellipse distribution in some sedi- 
ments is not symmetric about the cleavage, which it must 
be if the cleavage is a principal plane of the finite strain 
ellipse and the initial distribution was random. The 
solution is often taken to be that the initial distribution 

Notation 
g unit tensor 
D deformation tensor 
F Finger's tensor = D D  T 

N shape tensor = F(det F) -l~ 
E strain tensor = F lt2 
R rotational part of deformation, such that 

RR T = g and D = ER 

R axial ratio of ellipse 
=lnR  

• = "0/2 
0 angle of ellipse to x-axis 
e~ =20 

SG 6:4-E 



422 J. WHEELER 
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Fig. 7. The relation of the new grid vector (X, Y) to the conventional 
Mohr  diagram. 

X, Y Cartesian coordinates on grid 
P the grid vector (X, Y) 
J distribution spread invariant 
i, s, f subscripts denot ing initial, strain, final 
av(q) average of any set of  quanti t ies q. 

The result of two deformat ions  Dt and D z is given by 

D = D~D, (A1)  

SO 

F = DzDi(DzD0 r = D2F~D T. (A2) 

It is possible to consider this not as a superimposit ion of two deforma-  
tions, but  as a deformat ion D2 of an initial ellipse given by F~--whose 
equat ion would be 

x.FT~x = 1. (A3) 

We are interested only in the shapes of ellipses. Defining the shape 
tensor,  N, by 

N = F(det F)-1/2 (A4) 

we have 

det N = 1. (A5) 

Then  for an ellipse oriented along the x-axis 

N = IIR " 

If the ellipse axis is at angle # to the x-axis, then we can derive its shape 
tensor  by subjecting the tensor  of  (A6) to a purely rotational deforma-  
tion through angle 0. The deformat ion matrix is then 

[ :] cos 0 - s i n  
R = sin 0 cos 

which we use in (A2) to obtain 

N = ~ [ (R + IIR) + (R - I lR) cos 20, (R - IIR) sin 20] 
(R - I /R) sin 20, (R + l /R) - (R  - l /R)  cos 20J" (A7) 

This may be compared  with equat ion (3-72) of Ramsay  (1967). It is 
convenient  to introduce alternative representat ions to R and 0 as 
follows: 

X = sinh 7) cos ot = ½(N u - N~.) (A8) 
Y = sinh ~ sin a = NI2 

X and Y are Cartesian coordinates on the grid, sinh 7/ is the radial 
coordinate and a is the angular  coordinate.  Substituting (A8) in (A7),  

[cosh -0 + sinh ~7 cos a,  sinh ) ) s i n : ]  (A9) 
N = [sinh rt sin a,  cosh 7/ - sinh )1 cos 

= Y, ~ 1  + X 2 + y2 _ • (AI0)  

So far formulae have concerned any ellipse, be it a marker  shape or a 
strain ellipse. In what follows, N: refers to a final marker  shape,  N~ to 
the initial marker  shape,  and N, to the strain ellipse. Super impose a 
pure shear,  axial ratio R,,  on the ellipse. So 

and, with (A2),  

N r = D~N,D r 

= IR,(N,)tt. (Ni),~ ] 

L (Ni)I2 (N,),:/R,J 

which can be recast in terms of X and Y: 

X r =  X, V I  + X~ + V I  + X i  + y z x ,  ( A l l )  
D=Y,  

or in terms of )7 and a,  

cosh -of = cosh -0i cosh -05 + sinh -0, sinh -0s cos a, 

sinh 17 i sin o<, 
= (A12) 

tan a :  cosh -0i sinh r h + sinh rli cosh r h cos a, 

( these equat ions were misprinted in Elliott 1970). 
The diagram has the following properties.  
(a) As R, increases. Y stays constant.  So if we represent  the ellipse 

by Cartesian coordinates X, Y,  coaxial paths will be straight,  parallel 
lines. 

(b) On  the Mohr  diagram (Fig. 7), the vector (X. Y) has a simple 
meaning.  

(c) The  properties of  the plot are rotationally invariant. So (a) is true 
for all strain orientations. 

(d) The  diagram is similar to the Elliott (1970) plot except that 
instead of plotting 

e = -0/2 

as radius, we plot 

X/X------T"~-~ - = sinh -0 = t_.(R - 1/R) 

(see eqns A8). 
The line Xi = 0 becomes deformed into true hyperbolae given by 

X t =  X , ~ / I  + Y~. (AI3)  

Circles X z, + Y~ = A z (corresponding to distributions of fixed RO 
become deformed to ellipses 

- "V1 + "Xr&]'-+ 
.I(/ Y} = A z (A14) 

,/1 +X~ ! 

which have an axial ratio 

X/1 + XT, = cosh )I, = ½(R, + I/R,), (A15) 

Now consider eqn.  (A2): 

F/= DsFiD~ r 

so 

det F/= (det De)-' det Fi 

and 

I D,N,D~. (AI6) Nf = ~---~- 

The following method is a slight modification of that of Shimamoto & 
Ikeda (1976)----they use N -~ instead of N, but results are equivalent. It 
uses the concept of an 'averaged tensor'. The average of a set of tensors 
is obtained by adding them together and dividing by their number, in 
the usual way. The tensor average is not a new concept. It has b~en 
used implicitly in the literature for the calculation of a tensor used to 
describe the overall geometry of sets of planes or lines. This is 
'Scheidegger 's  orientation tensor '  (Woodcock 1977), also referred to 
as the 'dispersion matrix'  (Harvey & Laxton 1980). Consider  a direct 
average of all the shape tensors 

1 
av(Nf) = ~ O, av (Ni)D~ (A17) 

since D, is assumed homogeneous .  This suggests that we could define a 
' r andomness  criterion' for ellipses by 

av (Ni) = Jg. (A18) 

For, if av (N) were not a multiple of g, it would have different 
eigenvalues,  the largest of  which would indicate a preferred orienta- 
tion. If we substi tute eqn. (AI8)  in eqn.  (A17) and use 

N, = D,D,T/det D, 
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then 

av (Nt) = JN~. (A19) 

But since dct N, = I by delinition, 

J-~ = det (av (Nt)). (A2(I) 

We can re-express this using eqn. (A10) as 

1 
P, = j av (Pf) (A21) 

where P is the position vector ol" an ellipse on the plot. Expanding eqn. 
(A20) gives 

j z  =lav (Vl + X~ + Y~)I -~ - [av  Xff -  - lay Yr] 2. (A22) 

J is the same for a given distribution, whatever the strain (from eqns. 
AI8 and A20). In particular, for a random distribution, 

av (Pi) = (I (A23) 

SO 

J = av(~/l + X z, + Y~) (A24) 

= av (cosh'0,) = .J.,av(R i + l/R,). (A25) 

In the undeformed state, J is a measure ot the spread in R values, 
having a minimum value of 1 when all are circles. Because ot this. and 
its independence from strain, it is a 'distribution spread invariant. 

Finally, consider the behaviour of bedding, it might be thought that 
a bedding plane could be represented by an ellipse infinitely flattened 
in that plane, and hence by a point at radial inlinity on the plot. In this 
case, the plane initially at 0, = 45 ° would move with the asymptotes ot 
the hyperbolae (eqn. A13). So wc would have 

1 1 2R, 
tan a X, sinh 7/, R 2, - 1 (A26) 

which can indeed be shown to be the same as Harkers' formulae for 
0, = 45 °. 

tan 0 = l /R, .  (A27) 

The asymptotes to the grid hyperbolae are indicated by ticks round the 
edge of the grid (Fig. 2). 

Algol 68 procedures to draw grids, plots and manipulate ellipse data, 
and draw onion sets are available on request. A4 size enlargements of 
Fig. 2. are also available. 


